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Large scale disasters like the earthquake and tsunami in Japan (2011) cripple the local
infrastructure. Proprietary systems and protocols used today for disaster response still lack
data at the high spatial and temporal resolution needed to quickly save lives and to support
disaster recovery efforts. Victims are rescued after days, if not weeks; digital coordination
interfaces among responders are lacking, or are based on archaic methods (pencil, paper,
paint on walls); the delay in receiving vast amounts of information from the field is
bounded by the time used to physically transport tapes or hard drives. In this paper we
present the design, implementation and evaluation of DistressNet, a system that provides
services for emergency response applications. DistressNet integrates a variety of rapidly
deployable, battery powered COTS devices into a secure framework. An optimal placement
of networked components allows users to quickly and reliably store and retrieve data, in a
‘‘cloud’’-like manner, from a local intermittently connected ‘‘fog’’. High volumes of field
data are available for emergency response personnel to view on interfaces like smart-
phones and tablets. DistressNet is a large academic effort, proposing open systems, instead
of proprietary solutions. It has been developed in collaboration with Texas Task Force 1 and
its components have been evaluated for over one year in outdoor deployments that
required over 1500 man hours.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Disasters, natural or man made, are unexpected events
that cause significant distress and havoc on a global scale.
The best that can be done in the face of such uncontrollable
acts of nature is speedy and effective recovery. Recent
disasters in Japan and Haiti [1,2] have shown the effect
that they can have on people, property, and the economy.
Repercussions include, but are not limited to shortage of
electric power, food, potable water, protection from the
elements of nuclear and/or chemical hazards. In such
situations, disaster response becomes increasingly difficult
and constrained.

Several countries have set up governmental agencies to
deal with such disasters, such as Texas Task Force 1 – Ur-
ban Search & Rescue (US&R), an agency part of FEMA [3]
in the US. Several Task Forces comprising of trained per-
sonnel and specialized equipment have been deployed by
FEMA in the event of such disasters. From our collabora-
tions with US&R responders, we are keenly aware of the
66 tons of equipment emergency responders maintain in
their cache. While this equipment has been tried and
tested in the field, there are numerous examples in which
new technologies like deeply embedded sensors and ad
hoc/delay tolerant networking over high capacity storage
devices can make a significant impact. Some of these tech-
nologies have not been considered robust enough unless
deployed by a military/government contractor until
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recently, when the US Army announced that it plans to
adopt commercially available hardware (e.g., iPhones) for
combat [4].

Research challenges that need to be addressed before
new such technologies are adopted in the real world, i.e.,
by emergency response teams, include secure transport
and high availability of data to and from heterogeneous de-
vices, the ability to synchronize data with cloud services
like Amazon S3, Microsoft Azure or Flickr, modular and
open design of infrastructure and applications, and a
high-throughput delay tolerant network of devices pow-
ered by batteries. Additionally, emergency responders
have specific requirements or applications. One such
requirement, obtained in consultation with US&R respond-
ers is to enable the discovery of victims under the rubble of
collapsed buildings in a timely manner (unlike several days
in Japan).

To address the aforementioned challenges, we have de-
signed, implemented and evaluated DistressNet, a wireless
sensor, adhoc and secure delay tolerant network system
for disaster response. Thousands of sensors, equipped with
vibration and acoustic sensors, are deployed over all col-
lapsed buildings, continuously monitoring them for poten-
tial survivors under the rubble. Buildings surveyed by
US&R responders are digitally tagged, allowing for fast,
reliable and inexpensive high resolution data collection
and situational awareness. Data is stored and replicated lo-
cally on battery powered devices, as well as being simulta-
neously backed up to a traditional cloud service. Teams of
responders are equipped with mobile computing devices
which can readily access data from other areas in the disas-
ter as well as collaborate with other teams. Data and gen-
erated events in the field are relayed over an open standard
delay tolerant network to the Command and Control center
(C2). Strategically placed data waypoints allow for a high
throughput and secure data delivery paradigm. DistressNet
runs entirely on batteries, as US&R emergency responders
learned is necessary, during Hurricane Katrina. More pre-
cisely, the contributions of our paper are as follows:

� To the best of our knowledge, we present the first
design and implementation of a complex system (i.e.,
sensing, networking, data management) for emergency
response that addresses US&R responder requirements
and is evaluated in a realistic environment, utilizing
over 1500 man-hours worth of deployment experiences
and data.
� A FogNet service which enables constant availability of

external cloud services over a local, disconnected DTN.
� Development of sensing modality that allows continu-

ous monitoring of a large number of collapsed buildings
for survivors, in stark contrast with today’s state of art,
requiring responders to be physically present in the
field, and requiring no noisy activity, interfering with
their acoustic monitoring.
� A unified mathematical model that optimizes the aggre-

gate throughput of data flows in a heterogeneous DTN
based on vehicle mobility and per-contact data
transfers, made possible by placing a few additional
devices.
2. Motivation and related work

Our motivating scenario is a large scale disaster (e.g.,
entire cities/regions are affected) and not a local, block-
wide emergency in a city or a town. Unfortunately, recent
history gives a few motivating examples like the earth-
quake in Haiti [2] and the tsunami in Japan [1]. In these
incidents, the communication infrastructure is disrupted
(i.e., cellular networks are completely or partially dam-
aged) for weeks if not months, there are serious shortages
of power (i.e. power sources like nuclear reactors are dam-
aged), surveying the disaster area for survivors under the
rubble takes from days to weeks (with some inspiring
examples of survivors emerging after tens of days) and
the C2 is flooded with sensing and multimedia data from
the field. This febrile, fast pace environment lasts from
one to several weeks, until the infrastructure is usable
again.

In this remaining part of this section, we briefly review
related, state of art work. We have presented a more com-
plete review in [5]. A mandated and standardized equip-
ment list for FEMA US&R teams is available online [6].
Each task force maintains its own cache, containing over
16,000 items. The technical equipment details Project 25
(P25) [7] compatible 2 way portable wireless radios. A
120 V AC powered base station and battery powered
repeaters are mentioned. Voice/data channels are available
on such systems only at very low data rates of 9.6Kbps [8].

The Wireless Internet Information System for Medical
Response in Disasters (WIISARD) [9–11] is a 802.11 based
wireless mesh network (WMN) tailored to provide effec-
tive medical response in the event of a disaster. Digital tags
on patients [12] are read by medical personnel using PDAs
which roam the area while being connected to the Internet
via backhaul connections [13]. The primary difference be-
tween DistressNet and the latest version of WIISARD [9]
is that DistressNet is designed for the needs of urban
search and rescue personnel when operations occur over
a large geographical area. While medical triage is handled
by WIISARD, DistressNet addresses US&R operations like
searching for survivors building rubble and building mon-
itoring using low power 802.15.4 devices. As stated in [9],
the major contribution is not WCP itself, but the character-
ization of link quality and human mobility patterns during
the medical triage phase. In [14], the authors present a
framework designed to improve information sharing dur-
ing disaster rescue. Responders place RFID tags on build-
ings and program them with 802.11 enabled devices,
which form a mobile ad hoc network. Our work utilizes
802.15.4 based motes which are capable of sensing tem-
perature and/or air quality – a feature that is not found
in RFID tags.

We draw upon a large body of research experiences in
the field of delay tolerant networking (DTN) [15]. Dieselnet
and the DOME testbed [16] provide rich information about
implementing routing protocols [17] and providing a
public DTN testbed using WiFi devices mounted on buses.
Project RESCUE [18] provides an overview of a WMN
[19,20] for effective emergency response. In [21], a hybrid



Fig. 1. Schematic of a DistressNet deployment showing all components. Data generated by BTag and Seismic Sensors is ferried to the Base Station using
Vehicle Nodes. A Data Waypoint improves the data transfer process by creating a contact opportunity between two Vehicle Nodes.
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WMN makes use of wireless WANs to access traditional
networks using routers affixed to lamp posts. The SAFIRE
project [22] deals with situational awareness for firefight-
ers. [23] has commercial offerings which accomplish net-
work centric warfare. To the best of our knowledge, these
systems assume a powered, connected network and do
not offer integration of low power smart devices.

The problem of intelligent placement of relays to im-
prove the performance of mobile DTNs has been studied
[24–27]. [24] presents a scheme to deploy relays, called
throwboxes, in mobile DTNs to maximize data rate be-
tween mobile nodes. [26] studies the hardware architec-
ture for such relay nodes in an attempt to increase the
lifetime. DistressNet deals with a slightly different problem
where instead of maximizing the data rate between mobile
nodes, we focus on optimizing the end-to-end aggregate
throughput of all data flows in the network. Sink election
is an important primitive in DistressNet. Recent solutions
assume that sink is always fixed and concentrate on delay
and energy consumption [28]. In our application, the posi-
tion of sinks must be chosen based on traffic pattern.

DistressNet improves upon the above corpus in several
ways – it provides services like file storage and social net-
working specifically designed to be available even in the pres-
ence of network delay and disruption. Several optimization
algorithms, integrated with the system, improve the aggregate
throughput by creating contact opportunities or by choosing a
data aggregation point. The system has been designed and is
being developed in consultation with real emergency response
personnel. Several versions were built and deployed on com-
monly available hardware, completely battery powered.

3. DistressNet system design

In this section we describe the system design of Dis-
tressNet. A conceptual model of the disaster recovery pro-
cess is first presented. Then, the responder requirements
gathered from our interaction with first responders is pre-
sented, followed by a list of design principles behind Dis-
tressNet. Finally, the DistressNet network architecture is
discussed.

3.1. Conceptual model

DistressNet addresses the needs of the disaster recovery
process in the US&R area, as opposed to the medical triage
area of a large disaster, as illustrated in Fig. 1. When a
disaster hits an urban metropolitan area that spans tens
of square miles (2011 Joplin tornado) or hundreds of
square miles (2011 Japan earthquake), power and commu-
nication infrastructure are rendered unusable. A situation
report about the 2011 Joplin Tornado [29], three days after
the disaster, offers a glimpse into the situation: electric
services are still being restored, a few cell sites have been
restored, cell phones are being distributed and satellite
telephone has been set up. In this kind of environment,
presence of broadband internet access cannot be assumed,
and blanketing a large urban area with battery powered
communication hardware is near impossible. Providing
data to US&R responders at high spatial and temporal res-
olution, with only tens of routers becomes a challenge. We
assume that in such an environment, there are multiple
collapsed buildings (buildings in Fig. 1) or rubble piles in
the affected area (‘‘Rubble Pile’’ in Fig. 1), and the Com-
mand/Control center (‘‘C2’’ in Fig. 1) is situated tens of
miles away from the affected area. Limited internet con-
nectivity is available only at the C2. There is some mobility
in the area (‘‘Vehicle Node’’ in Fig. 1) as medical supplies
and rescued victims are transported from the field to the
C2.

3.2. US&R responder requirements

DistressNet was built over two years, based on inputs
from first responders as well as iterative improvements
from implementing various design choices. The FEMA
equipment cache list [30] gives the reader an idea for the
size, cost and bulk of equipment currently used by US&R
teams. Based on this list and interaction with Texas Task
Force 1 US&R we outline the responder requirements and
their relation to computer network metrics.

3.2.1. Qualitative requirements
These requirements improve disaster response by

reducing the time required for personnel to perform their
tasks, by enhancing the quality of available data using
new methodology or technologies and also by removing
practical roadblocks.

REQ1: Smart victim detection under rubble: Highly
sensitive seismic sensors that pick up vibration from a rub-
ble pile were used during the 9/11 emergency to locate
trapped victims [31]. First responders can listen for human
voices or activity through attached headphones, and can
locate them by asking victims to tap on nearby pipes.
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However, the low frequency sound created by shaking
buildings and nearby human activity interferes with this
detection process [31]. Automatic noise filtering (1) elimi-
nates the ‘‘All Quiet’’ condition required for seismic sensor
use (which halts rescue efforts in the immediate surround-
ings); and (2) enables the re-deployment of on-site person-
nel to other areas of the disaster.

REQ2: Digitized building information: Whenever
US&R teams search buildings, the search status of the
building is indicated using markings (called X-codes,
FEMA/INSARAG format) painted in day-glo orange on walls
(tagging), for the benefit of other teams. This includes data
like the last search date/time, presence of hazards etc. Dig-
itizing such tags using low power motes will provide the
C2 with high situational awareness due to the variety of
information that can be sensed on motes. By digitizing
building tags and enabling automated data collection, re-
sources can be allocated by the command center more
efficiently.

REQ3: Disconnected social networking: Social media
like Twitter are increasingly being used by the public dur-
ing the aftermath of disasters for communication and
information dissemination [32]33. Information sharing by
responders during disaster recovery could possibly en-
hance the recovery effort. However, there is no such ser-
vice for disconnected networks like DTNs, since social
media apps on smartphones assume the presence of inter-
net connectivity. An equivalent service for DTNs will pro-
vide responders with an opportunity to share information
without requiring constant connectivity, while automati-
cally syncing with the Internet whenever Internet access
is available.

3.2.2. Quantitative requirements
These requirements improve disaster response by

improving existing metrics, such as aggregate network
throughput and the time taken to detect separation in
the team. In DistressNet, they are networking related solu-
tions and improve metrics typically addressed by network-
ing research.

REQ4: Fast team separation detection: During US&R
operations in a collapsed building, team members may be-
come separated from each other due to falling beams, or
they may lose vital tools like cement saws accidentally.
We present an algorithm that lets each team member
know of any separation in the team independent of the
team size, even when the separation or ‘‘cut’’ occurs many
hops away. Team separation detection delay is measured
in seconds. An app installed on a smartphone alerts a first
responder immediately after a tool or team member is de-
tected as missing, enabling recovery from the situation
within seconds.

REQ5: Improved situational awareness: Situational
awareness can be improved with a large amount of accu-
rate data at a high temporal and spatial resolution being
made available periodically with the least delay. However,
this task is challenging because the network is fragmented
due to the size of the area. Much of previous research has
been devoted to improving network performance metrics
like throughput, packet delivery ratio and delivery latency.
We quantitatively measure situational awareness by
aggregate throughput in Kbps and delivery latency in sec-
onds. By placing additional hardware in the disaster af-
fected area, the aggregate throughput of the network is
increased and the end-to-end delay is decreased, providing
the C2 with increased situational awareness.

3.3. Design principles

Based on first hand accounts of US&R deployments and
responder requirements, we decided on a set of principles
that shall govern our design of DistressNet. A list of appli-
cable system design principles can be found in [34].

PRI1: Unmodified COTS devices: Governmental orga-
nizations are increasingly adopting COTS devices because
of the available support and software, at fairly economical
prices as compared to a custom platform. In many in-
stances, US&R responders have used their own personal
iPhones during disasters to email photographs of rubble
piles. In any case, one cannot assume a ‘‘jailbroken’’ device
where one can have complete control, as is fairly common
with hardware platforms used in academic research. In-
stead, the system has to be designed such that stock capa-
bilities of popular COTS devices are sufficient, so that
devices can be borrowed and setup easily. A custom rout-
ing protocol or user replaceable batteries are not possible
on the iPhone, as an example.

PRI2: Open standards and protocols: Standardized
protocols, preferably of international scope, are empha-
sized. Certain WiFi channels are allowed in Japan but not
in the USA; such issues should be planned for. At every
layer of the system, open formats and widely supported
protocols make integration of hardware with other inter-
national teams much easier.

PRI3: App oriented design: Because complexity is
pushed towards the application layer, updating the system
becomes easy and does not need recompiling/reflashing
the entire device, especially during disasters. When de-
ployed on a large scale over a variety of heterogeneous de-
vices, PRI3 will significantly reduce roadblocks
encountered in platform adoption. At the same time, sim-
plicity in these complex apps is necessary: when a hu-
man–computer interface is present, having more than
three buttons will cause the device to be left behind in a
vehicle, instead of being used by first responders.

PRI4: ‘‘Premature optimization is the root of all evil’’:
With DistressNet we first build a proof-of-concept imple-
mentation that captures most of the required functionality,
and then iteratively optimize the system based on deploy-
ment experiences. For example, we trade performance for
simplicity in the source routing optimization, by using a
simplistic vehicle movement model. The gained simplicity
makes it easier to deploy DistressNet as a whole with lim-
ited manpower, providing us with valuable experience
which we can then use in the next iteration of the source
routing protocol.

3.4. DistressNet hardware architecture

Here we present the hardware and network
architecture of DistressNet, using the typical deployment
scenario in Fig. 1 as reference. Based on the hardware
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characteristics, components can be classified in three clas-
ses: A, B and C. Since each component performs a function
related to its hardware capabilities, there are three soft-
ware classes as well – these are shown below. A compre-
hensive listing of all components with their hardware
classes and functionality is available in Table 1.

3.4.1. Class A: Sensing/monitoring
[DistressNet components] A BTag Sensor (BTag stands

for ‘‘Building Tag’’) is a 802.15.4 based monitoring device
which is attached to buildings externally. A Seismic Sensor
(a Delsar Life Detector, as shown in Fig. 2) is a device which
monitors rubble piles for vibrations.

[Hardware] These components are typically imple-
mented on low power, battery powered platforms such
as an EPIC mote. The data sensed may be either time crit-
ical or informational. Being heavily duty cycled, they are
designed to last for several weeks with a single charge.
802.11 support is rarely found on these devices, with
802.15.4 or no networking being more common.

3.4.2. Class B: End user interactive
[DistressNet components] Smartphones are used in

DistressNet to access data while in the field. A BTag App
(Fig. 5 in the next subsection) is used to program BTag Sen-
sors once they are deployed, with relevant information.
Table 1
DistressNet components.

Component Class Function

BTag sensor Class A Sensing
Seismic sensor Class A Monitoring
Smartphone Class B End user interface
Data waypoint Class C Networking
Base station Class C Networking
Vehicle node Class C + A Networking & proxy
Sensor proxy Class C + A Networking & proxy

Fig. 2. Delsar life detector with steel spike driven into the ground, and
interfaced with an EPIC mote.
Using the widely used iOS SDK, the iPod Touch was cus-
tomized. However, we were limited to the application
layer since the SDK does not allow non-trivial modifica-
tions to the operating system for security reasons. The fact
that 802.11 IBSS mode was readily supported out of the
box made us choose iOS over Android.

[Hardware] Smartphones and popular network centric
consumer electronics like tablets which have networking
capabilities, but have limited resources. These provide a
rich interface to the data collected in the field, while also
providing some functionality themselves. Not as resource
constrained as sensors nodes, most devices have 802.11
capability and are designed to last a few days on a single
charge. These devices also have various sensors.
3.4.3. Class C: Network backbone
[DistressNet components] Sensor Proxies, Base Stations,

and Data Waypoints are class C components in DistressNet.
They are portable, battery powered devices which provide
basic wireless networking functionality and are deployed
in the field. An example is a common 802.11 router found
in most homes today. They can be assumed to have expan-
sion ports to provide additional functionality like persis-
tent storage or cellular connectivity. These can either be
static or deployed inside a vehicle. In DistressNet, these de-
vices are the only ones implementing DTN capabilities.

[Hardware] These components use the RB433UAH rou-
terboard (Fig. 3). RB433UAH has 3 MiniPCI slots and 2 USB
ports, allowing for two 802.11abgn wireless cards config-
ured for 2.4 and 5 GHz. It also has 512 MB of NAND flash
and 128 MB of RAM. OpenWRT is an open source operating
system compatible with this router, which was chosen be-
cause of the openness and the wide range of software and
support available. The USB port can be used to provide
Fig. 3. Mikrotik RB433UAH wireless router mounted on a tripod and
powered by a battery.



Fig. 5. DistressNet software architecture: Class B: End user interactive.

Fig. 6. DistressNet software architecture: Class C: Network backbone.
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functionality like a new physical layer such as 802.15.4
(used in Sensor Proxies), enhanced storage like a USB flash
drive (for Data Waypoints) or both.

3.5. DistressNet software architecture

We briefly describe the software used in the three de-
vice classes of DistressNet.

3.5.1. Class A: Sensing/monitoring
The applications deployed on these devices include

sensing and services (BTag, Sink Election and Sensing in
Fig. 4). When networked, these components use a tradi-
tional stack like UDP over IPv4 or v6. In DistressNet, we
use RPL, an IPv6 Routing Protocol for Low power and Lossy
Networks, as the default routing protocol. To utilize the
DTN capabilities of DistressNet, these devices need a Sen-
sor Proxy which is a Class C device.

3.5.2. Class B: End user interactive
Such devices are typically incapable of routing or ad-

vanced networking capabilities and have limited, but not
scarce, resources. An example is a smartphone or a tablet
which we can install apps on. While users do not have ac-
cess to the OS or lower layers, they can still use a nearby
router as a proxy for their networking needs. Since an iPod
Touch does not allow applications (developed using the of-
fered SDK) to modify networking routes in the OS for secu-
rity reasons, it is restricted to one hop communication. If
the smartphone needs to utilize DTN capabilities, it sends
its data to a nearby Sensor Proxy.

Apps installed on these devices are more of data con-
sumers than data generators. The file sharing and social
networking apps (as shown in Fig. 5) are end user inter-
faces for accessing the Fog. The network stack on these de-
vices consists of TCP/UDP over IPv4/v6 and 802.11.
Additional non-network software includes device drivers
for cameras and various sensors, and apps which use these
sensors.

3.5.3. Class C: Network backbone
The dominant stack used in DistressNet is 802.11abgn

in IBSS mode below IPv6/v4 and UDP (Fig. 6). For
Fig. 4. DistressNet software architecture: Class A: Sensing.
implementing DTN functionality, we used the IBR-DTN
implementation which is readily available as a package
for OpenWRT. The software ecosystem offered by Open-
WRT allowed us to completely customize the router
according to our needs, with a variety of available and pos-
sible functionality. DTN is implemented as an overlay net-
work of nodes where multiple local clients can connect to a
local DTN server (Bundle server in Fig. 6) in the application
layer. A special DTN app on the router which can talk to the
Class A device as well as the DTN server and has 802.11
connectivity provides DTN proxying functionality for class
A devices (‘‘802.11–802.15.4 Switch’’ in Fig. 6). Class C de-
vices perform two distinct classes of routing: DTN specific
routing and WMN specific routing. While OLSR was used
for mesh routing because of the stable implementation,
there are several routing protocols specifically designed
for both opportunistic and scheduled delay tolerant net-
works. Epidemic routing and PRoPHET routing are two
popular protocols which we consider. Our waypoint place-
ment algorithm also affords a simple source routing proto-
col for DTNs, as discussed in future sections. Since most
COTS WiFi compliant devices belonging to class B support
only the 2.4 GHz band, we decided to use the 5 GHz inter-
face exclusively for DTN routing, mesh routing and DTN
services which are unique to class C. DHCP is provided on
the 2.4 GHz interface for clients to connect. All routers
have statically assigned IPs – router n has an IP of



Fig. 7. Firm and potential flows in DistressNet.

2446 H. Chenji et al. / Ad Hoc Networks 11 (2013) 2440–2460
192.168.50.n for its 5 GHz interface and 192.168.n.1 for the
2.4 GHz interface. Each router can handle 255 end user de-
vices – they are assigned IPs in the 192.168.n.0/24 range.

A ‘‘Bundle’’ (RFC 5050) is the primary data unit in Dis-
tressNet DTN. Each DistressNet DTN node is identified by
a URI like dtn://dn.zigbeegateway1. A client application
with an ID of mote1 can connect via an API to the local
‘‘Bundle Server’’. Then, any traffic intended for this app will
simply need to be addressed to dtn://dn.zigbeegateway1/
mote1. Examples of functions provided by the bundle ser-
ver API includes registering the application name (e.g.,
‘‘mote1’’), setting a destination, requesting encryption or
authentication or custody transfer and setting the lifetime.
All communication in the DTN layer of DistressNet can be
encrypted and authenticated, as defined in RFC 6527. Each
DTN node first generates, pre-deployment, a 2048-bit RSA
public/private key pair. The public keys of all nodes are
aggregated and shared among all DistressNet DTN nodes.
This data is used for bundle encryption in a public-key
cryptography fashion. It is to be noted that bundle encryp-
tion is always between source–destination and authentica-
tion is always on a single hop basis. Bundle authentication
in DistressNet uses the HMAC-SHA1 message authentica-
tion cipher, which encrypts a message based on a key. In
this case, the key is a pre-shared plaintext key of arbitrary
length that is different from the public/private keys.

4. DistressNet applications

In this section we present a limited set of DistressNet
applications: the vibration sensing app (as shown in
Fig. 4), the BTag, file sharing, separation detection and social
networking apps (as shown in Fig. 5), and the social net-
working service and Fog Services (as shown in Fig. 6). Before
we proceed, we first define how data is created and used in
DistressNet using the concept of flows. A flow defines the
source and destination for a particular type of data, either
deterministically or probabilistically. Since data can be
sent using various paths in a DTN, the optimization of data
movement in the network is critical. The algorithms and
mathematical framework for Fog optimization is discussed
in Section 5.

4.1. Data production and consumption

The main idea behind servicing DistressNet applica-
tions, as shown in Fig. 7, is to mirror a traditional external
service (like Flickr, Amazon S3 or Twitter) in a local DTN,
containing a mixture of mobile and static vehicles and de-
vices. In DistressNet, mobile teams visit multiple points of
interest in the affected area. Devices may be deployed at
various locations/points of interest for unsupervised moni-
toring of the environment. These points of interest eventu-
ally act as sources and destinations of data in DistressNet. As
shown in Fig. 7, special points of interest in DistressNet are
the C2, and an Internet Gateway which may not be co-lo-
cated with the C2. The Internet Gateway provides access
to ‘‘Cloud’’ services, which are common in traditional inter-
networks and becoming of interest to emergency response
applications. The link between DistressNet and Cloud ser-
vices, however, is a high cost link. Internet access for large
amounts of data may be high cost and resource demand-
ing. Therefore, and this is a key idea in DistressNet, remote
Cloud’s services are provided locally in the Fog (i.e., the instan-
tiation of a Cloud in the intermittently connected DistressNet).
Because accessing services directly from the Cloud incurs a
high cost, if at all possible, it is much more efficient to in-
stead access services from the Fog.

As shown in Fig. 7, in DistressNet there are several data
‘‘flows’’. Some flows are ‘‘firm’’ – these have a pre-decided
destination and source. Other flows are ‘‘potential’’. These
potential flows represent data to be stored somewhere in
the Fog, without a specific destination. For the data stored
in the Fog, DistressNet uses an ‘‘availability’’ metric which
ranges from 0% to 100% and denotes the importance of the
data. An availability of 100% means that data will be avail-
able on all Fog devices in FogNet, whereas an availability of
25% means that data will be available on at most a quarter
of Fog devices. More critical data will have higher availabil-
ity. Examples of data and its availability metric include
data generated by BTag Sensors, which is not critical and
has an availability of 33% (i.e., the BTag Sensor Data will
be probabilistically stored on about 30% of existing desti-
nations in the Fog), and data generated by Seismic Sensors
which is critical and requires 100% availability (i.e., the
Seismic Sensor Data will be stored on all existing destina-
tions in the Fog). The specific data flows in DistressNet, and
their availability metric are discussed in the following
subsections.

4.2. File sharing app (Class B, REQ3)

The file sharing application allows authenticated users
to share data with other users, or groups of users. As an
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example, one can imagine a team of responders sharing the
layout of an explored building along with current hazards,
with other nearby teams. An important feature that
emphasizes the need for such a service is that the destina-
tion for data sent is unknown – it is simply stored in the
‘‘Fog’’ and accessed by anyone who connects to FogNet,
via a class C device.

The client application runs on a Class B user interface
device which connects to a nearby Class C device. The
Fog Services server application, running on a Class C device,
as shown in Fig. 6, handles the authentication. Users of this
application can ADD/DELETE/MODIFY files which they
own. They can also share files with other teams. Examples
of files that users can upload include video taken using a
smartphone’s camera. Users can also specify whether they
want to backup these files to an external storage provider
like Amazon S3 or Flickr. If a client wishes to use their own
external account, an encrypted query, using the provider’s
API (S3’s API or Flickr’s API), is sent to the Internet Gate-
way. Clients can, in addition, specify availability metrics
depending on the importance and criticality of the data.
The flows for file sharing are: for each class C device imple-
menting Fog Services, one firm flow to the Internet Gateway
for backup, and one potential flow from the Internet gateway
to the Fog for synchronization.

4.3. Social networking app (Class B, REQ3)

This application uses the aforementioned file sharing
service to provide additional services like inter-team mes-
saging, and allows victims to publicly tweet their status. A
social networking app running on a class B device connects
to a nearby class C device which offers the social network-
ing service (i.e., possibly running on a Vehicle Node, for
example). Users can communicate with other users, or
mass message other teams or team members. They can
also choose to post messages to an external Twitter ac-
count, for example. It is important to note that such mes-
sages will be available in the Fog, as well as on their
Twitter profiles – thus, an external service like Twitter is
mirrored in the Fog. All data from Twitter is pulled regu-
larly by the Internet Gateway and sent to the Fog (Fig. 8)
so that the data stays synchronized. The flows for social net-
working are: For each class C device implementing social net-
working service, one firm flow to the Internet Gateway for
backup, one firm flow to the C2 for situational awareness,
and one potential flow from the Internet Gateway to the Fog
for synchronization.

4.4. Vibration sensing app (Class A, REQ1)

The FEMA US&R equipment cache list [6] mentions Del-
sar Life Detection sensors: a steel spike that is driven into
rubble which responders can then monitor for voices or
knocks from victims. Upon manually probing the rubble
at different places, the victim can be localized and rescue
operations can commence. Since these sensors do not have
any native networking capabilities, EPIC motes are used to
provide an interface, creating a Seismic Sensor component.
However, there are sources of noise like footsteps and
vibration from nearby vehicles which are also picked up.
The goal of the vibration sensing app is to automatically
detect and classify the source of vibration. To profile these
sources the steel spike of the sensor was driven into a
small wedge in a pavement outside our building on cam-
pus. Three sources of noise/data were profiled: a stone
dropped from a height, footsteps of pedestrians and a
knock made by a hammer on a pavement. The fixed-point
in-place 1024-bin FFT is shown in Fig. 9.

Algorithm 1. k-NN Classifier
1: for each si 2 s1 . . . sgn do

2: Compute di  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF1 � sf1

i Þ
2
þ ðF2 � sf2

i Þ
2

q

3: end for
4: r1 . . . rk The k smallest di

5: groups Union of groups that each of r1 . . . rk

belong to
6: G most common group in groups

It is important to note that the amplitude of the signal
alone cannot be used to classify a source. Hence, two fea-
tures were extracted from the FFT: (i) average value of
the frequencies weighted by their respective amplitudes
(f1) and (ii) the mean amplitude of the frequencies (f2).
We then used these features in a simple KNN (k-nearest
neighbor) classifier, motivated by the fact that classifica-
tion has to be done on a resource constrained Sensor Proxy.
Suppose that we have g different types of data G1 . . . Gg and
n samples for each group, for a total of gn samples s1 . . . sgn.
Let each sample be a vector consisting of two features
[f1,f2]. The KNN classifier first needs to be trained using
these samples. Training consists of storing each sample
and its corresponding group in memory. Now, given a
new sample S = [F1F2] that needs to be classified, Algorithm
1 can be used to calculate the group G that S belongs to,
thus identifying the source of the vibration. A Seismic Sen-
sor which contains the vibration sensing app communi-
cates with a nearby Sensor Proxy, which also acts as an
entrypoint into the Fog. The flows for Vibration Sensing
are: for each Sensor Proxy, one firm flow to the Internet Gate-
way for backup and one firm flow to the C2 for situational
awareness.
4.5. Building monitoring (Class A, REQ2)

BTag Sensors are low power devices which manage
metadata related to a building from a search and rescue
viewpoint. The primary motivation for this component
was the current state of art, where US&R personnel use
paint on walls (Fig. 10(a)) to store information about the
current search status of a structure. This includes informa-
tion like the number of survivors inside, the location of
chemical hazards if any and the most recent date/time that
the structure was searched [35]. This information is most
likely to remain constant and not change very often. Any
vehicles in the vicinity which drive by can electronically
gather data from the BTag Sensors, especially if they are
outfitted with special chemical or air quality sensors.



Fig. 8. Sequence diagram for accessing cloud and social networking services (e.g., Twitter).
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Fig. 9. Spectrum and signal of (a) stone drop (b) footstep.
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For the purposes of saving energy and choosing an
aggregator who is most likely to encounter a vehicle node,
these sensors perform Sink Election. Such aggregation by a
sink ensures that nodes which may not have a LoS to a
nearby road can still communicate their data to the C2 effi-
ciently. These tags are first programmed by search and res-
cue personnel once the search is complete, by using the
‘‘BTag App’’ (Fig. 5). A screenshot of the app running on
an iPod Touch is shown in Fig. 10(b). The flows for Building
Monitoring are: for each Sensor Proxy, one firm flow to the C2
for situational awareness.
4.6. US&R team separation detection app (Class B, REQ4)

US&R operations in an unexplored large areas with low
visibility and potential hazards (e.g., collapsed tunnel,
chemical spills) are dangerous. Any incidents involving
team member separation or loss of vital tools (a ‘‘cut’’ in
the network) can slow down the victim rescue process
because of unnecessary delays. To meet the need for a
separation detection method, we develop an iOS applica-
tion on an iPod touch that enables each team member to
monitor connectivity to a team leader multiple hops away,
and warns a team member of physical separation from
the team leader.

This app (‘‘Separation Detection App’’ in Fig. 5) is in-
spired by the distributed cut detection algorithm pre-
sented in [36]. A node in an electrical network containing
a current source will see a change in its potential when
there is a partition in the network, enabling it to detect
changes in network topology. Similarly, every node n in a
computer network maintains a positive scalar value called
the ‘‘state’’ st(n), updating it using the formula
stðnÞ ¼ ð

P
NðnÞstðiÞÞ=ðjNðnÞj þ 1Þ, where N(n) is the set of

one hop neighbors of node n. A special source node S in-
jects a value I by updating its own state using the formula

stðSÞ ¼
Iþ
P

NðSÞstðiÞ
jNðSÞjþ1 . The state of each node converges, given a

network topology. A node in the same partition as S after a
cut will see its state converge to a higher value, otherwise
it drops to zero. The convergence time is fast and the



Fig. 10. (a) Markings indicate that the buildings have been searched; (b) screenshot of a BTag app on an iPod touch.
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maximum delay in experiencing such a change is bounded,
as shown in [36]. Thus, this algorithm helps first respond-
ers detect accidental separation in the team by using only
one hop communication.
5. DistressNet services

In this section we describe services and algorithms
which optimize and implement the above functionality.
FogNet refers to the use of potential and firm flows to build
a DTN that enables file sharing (Fog Services in Fig. 6) and
social networking (social networking service in Fig. 6). In
order to optimize these flows, Data Waypoints need to be
placed at certain places in the area of deployment. The
aggregate throughput obtained by placing these waypoints
depends on the per-contact data transfer capability of
nodes, which is a function of the node’s speed and payload
size. In addition, BTag and Seismic Sensors which do not
have a Sensor Proxy nearby can send data directly to a
Vehicle Node. In either case, those nodes need to perform
Sink Election in order to elect a data aggregator.

5.1. FogNet services

FogNet enables file storage and social networking in a
disconnected DTN, and is built as a DTN overlay. Such ser-
vices enable teams of responders to store important data
on nodes, access them on demand and share them with
other teams. A traditional cloud storage service has the fol-
lowing functionality and properties: (i) The ability for a cli-
ent to upload a file to the cloud, without specifying a
destination node; (ii) The ability for a client to retrieve a
file, without specifying the location of the file; and (iii)
Data robustness due to intelligent replication performed
by the cloud service back end. We term the same Cloud func-
tionality when provided over a DTN as a ‘‘Fog’’ service.

FogNet clients are class B devices, while the FogNet ser-
vices are implemented on class C devices. Sources and des-
tinations of flows in DistressNet belong to classes A or B,
but never class C. The file sharing and social networking
app on class B devices accesses Fog Services and social net-
working service on class C devices, respectively. The social
networking service in turn uses the Fog Services for storage
of data. The ‘‘Fog Services’’ app on class C devices imple-
ments the ADD/DELETE/MODIFY actions that can be per-
formed by clients. Whenever a client performs any of
these actions, the server performs local modifications.
These local modifications are then communicated via
DTN to other FogNet devices. Thus, actions performed in
the Fog translate to traffic created over DTN.
5.1.1. FogNet API and security issues
The FogNet API insulates the user, first responders in

this case, from the inner workings of the underlying DTN.
It aims to provide a service similar to those offered by
cloud storage services like Dropbox and Amazon S3. Three
primitives called ADD, DELETE and MODIFY provide an
interface into FogNet. The ADD primitive adds a file into
the Fog. This file could consist of a tweet as produced by
the social networking app, or a photo from the user’s
phone as produced by the file sharing app. When an ADD
request is sent from a Class B smartphone to a nearby Class
C router (over raw UDP or HTTP PUT over TCP for example),
the Class C router first marshals the data into a bundle. This
bundle is replicated on multiple Fog devices according to
the availability of the associated flow. The actual Fog de-
vices are chosen based on the output of the optimization
problem presented in the following section. The bundle is
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source routed to those devices, again based on the solution
to the optimization problem.

The MODIFY/DELETE primitives are similar in behavior.
A MODIFY operation causes the Class C router to marshal
the difference between the current version of the stored file
and the new incoming file into a bundle. This bundle is
replicated to the same Fog devices which contain the origi-
nal. The Fog devices will locally modify their copy upon re-
ceipt of the bundle and push it to the user’s Class B device
when he/she connects. The DELETE operation simply sends
a bundle to the Fog device which says that the local copy of
the file on the device should be deleted. When a user con-
nects to a Class C device which has received a bundle, the
app on the smartphone will delete its local copy. The syn-
chronization between Class B and Class C devices is very
simple. When a user’s Class B device discovers a Class C
router nearby, it can supply a list of files stored locally
and ask for changes to those files. The Class C router will
reply with a list of changes, which the user’s device can ap-
ply to its local copy. This way, any app on the smartphone
can use the primitives mentioned above to use the DTN as
a cloud storage service.

[External accounts] The above primitives are for those
users who want to use FogNet’s social networking services.
If a user prefers to use their own personal Twitter account
or in general any service with a RESTful API, it is possible.
FogNet is capable of relaying data streams with end to end
encryption, using the simple trick of marshaling HTTP re-
quests into bundles and transferring them over the DTN.
Users need not disclose their existing external credentials
in order to use FogNet.

We consider Amazon S3 as an example of an external
RESTful cloud storage service provider. Files are uploaded
to S3’s servers using a published API which offers both a
REST and a SOAP interface using XML. When a user signs
up, a secret key is assigned. This secret key is then used
alongside HMAC-SHA1 in order to authenticate all HTTP
(optionally, HTTPS) requests. Whenever a user wishes to
place a file in S3, a challenge string is first constructed
based on a predefined ruleset, which then serves as the
‘‘message’’ in HMAC-SHA1. The output, which is a base64
encoded string, forms part of the HTTP request header.
The entire HTTP header and body (if applicable) is then
sent to Amazon by the client. This HTTP header and body
is intercepted by the Fog Service and sent to the Internet
Gateway via DTN, after being marshaled into a bundle.

5.2. FogNet service internals and optimizations (REQ5)

Mobile vehicles in a disaster stricken area can be lever-
aged as data carriers. They can gather data from various
data sources such as sensor sub-networks and deliver it
to data consumers like the C2 and/or a group of first
responders in a building along the path of the vehicle.
Some vehicles like ambulances go to the C2 more fre-
quently, while there may be some vehicles that do not visit
C2 for hours. Time is a critical factor in disaster response.
Thus, US&R operations happen simultaneously all around
the disaster area, as long as the access to the area is
cleared. These operations typically last for days; such pat-
terns indicate that we may be able to take advantage of the
(planned) paths of vehicles in order to move data more
efficiently in DistressNet. Teams are assigned to search
areas by a dispatch command. Our assumptions about this
model include the fact that vehicles always move in loops
at a fairly constant speed, that all devices in the model
have enough on board storage (expandable via USB, for
example), and that vehicles do not arbitrarily change paths
or schedules. The mobility model in DistressNet can be
thought of as a reduced version of the Post Disaster Mobil-
ity (PDM) Model [37]. The authors of [37] model the mobil-
ity during the disaster recovery process in terms of
‘‘Centers’’ which are points of interest in the area, ‘‘Mobil-
ity Patterns’’ which include event-driven/Center-to-Center
and ‘‘Mobile Agents’’ which include rescue workers, police
patrol cars and ambulances. We have chosen to model only
the ‘‘Cyclic route’’ mobility pattern for simplicity and trac-
tability – incorporating all of PDM model’s mobility pat-
terns is left as future work. Note that the movement of
responders around a point of interest is not modeled – only
the movement of vehicles in the disaster area is consid-
ered. This is because responders are assumed to move only
around buildings and thus, do not contribute to the data
muling process in the DTN. However, vehicles which roam
the area are equipped with routers and do participate in
the data muling process.

[Importance of payload size] The Data Transferred per
Contact (DTC) is the amount of data transferred between a
stationary node and a mobile one, either over 802.11 or
802.15.4. The DTC depends on many factors including the
size of each packet as well as the speed of the vehicle. It
is therefore important to consider these factors as variables
when modeling DistressNet.

[Preliminaries] Consider n vehicles V = {V1 . . . Vn} in
DistressNet, with the path of each vehicle being a loop
and hence representable by a closed polygon. For a vehicle
v 2 V, let this polygon be called Path(v), the speed of the
vehicle be Speed(v), the time taken by a vehicle to go from
point A to point B both on Path(v) and along it, be:

TðA;B; PathðvÞÞ ¼ DistðA;B; PathðvÞÞ=SpeedðvÞ

Let the set of data sources be S and the set of destinations,
D.

[Flows] Any deployment additionally has a set of firm
flows F, with each flow Fi 2 F having a data source

Fsrc
i 2 S, a destination Fdst

i 2 D and the size of the data Fdata
i

that can be sent from the source to the destination. Note
that a node may act as a source as well as a destination
in different flows. A similar set of potential flows P is also
defined, but each potential flow Pi 2 P has only a source

Psrc
i 2 S, an availability 0 < Pavail

i < 1, the maximum data

size Pdata
i but no destination. We construct the set of mod-

ified potential flows Q, from P such that each flow Pi 2 P is
assigned each destination d 2 D. Let Z # (F [ Q) be the fi-
nal set of selected flows such that:

� Every firm flow is included, i.e., F # Z
� The availability of each potential flow is satisfied.

Mathematically, for every Pi 2 P, there are at least
jDj � Pavail

i flows in Z, for which the source is Psrc
i , chosen

from Q.
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[Waypoints] A ‘‘waypoint’’ is a router placed at the
intersection of the paths of two vehicles v,w 2 V such that
data can be dropped by v and picked up by w or vice versa.
Let X be the set of all possible waypoint locations (which is
where ever the paths of any two vehicles intersect). A
‘‘solution set’’ for each flow Zi 2 Z means a sequence of
alternating vehicles and data waypoints that are capable
of carrying data from the source to the destination, i.e., a
set:

fZsrc
i ;v1

i ; x
1
i ;v

2
i ; x

2
i . . . Zdst

i g;v i 2 V and xi 2 X

The physical travel delay of a packet in a DTN is a major
component of the delivery delay, assuming other factors
like the queuing delay at a router, and the time between
packet generation and pickup up a vehicle are
negligible. The travel delay for a solution set

fZsrc
i ;v1

i ; x
1
i ;v2

i ; x
2
i . . . Zdst

i g is the sum of travel delays be-
tween Zsrc

i and x1
i , between x1

i and x2
i etc. Therefore, the

time taken for data to flow using the solution set for a flow
Zi will then be:

TðZiÞ ¼ TðZsrc
i ; x1

i ; Pathðv1
i ÞÞ þ � � � þ Tðxn

i ; Z
dst
i ; Pathðvn

i ÞÞ

[DTC] The maximum size of data that can be transferred
on a flow depends upon the DTCs of each contact in its
solution set: Zdata

i can now be defined as

Zdata
i ¼ minðcontactðv1

i Þ; contactðv2
i Þ . . . contactðvn

i ÞÞ

where contact(v) is the maximal DTC that is possible be-
tween a node and the vehicle v traveling at a speed
Speed(v).

[Problem formulation] The Waypoint Placement prob-
lem is now defined as follows – given an upper bound Xmax

on the number of waypoints (e.g., limited available hard-
ware), we choose X⁄ # X such that:

� For each flow Zi 2 Z, the solution set contains vehicles
which are found in V and waypoint locations which
can be found in X⁄.
� The aggregate throughput

P
z2Z

Zdata
i

TðzÞ is maximized.

� Optionally, the cardinality of X⁄ is less than Xmax.

To efficiently solve the above problem, we first create a
representative graph G. To construct this graph, first create
a vertex for each unique source and unique destination.
Next, create a vertex for every possible waypoint location
x 2 X. Draw an edge between any two vertices mi and mj

whenever a single vehicle v passes through both the verti-
ces. The key intuition here is that the weight of this direc-
ted edge is nothing but the time taken by the vehicle v to
physically transport the data from mi to mj. In order to ac-
count for uncertainty in the mobility model, a quantity
0 < arrðvÞ < PathðvÞ

SpeedðvÞ is added to the travel delay. Thus, the
weight of the edge in question will then be
arr(v) + Time(mi, mj, Path(v)). T(Zi) can then be modified to
take this into account by adding arr(v) to each term
appropriately.

Let a binary selection vector c = [c0, c1, . . ., c—X—] denote
whether a possible location xi 2 X is chosen to be a data
waypoint (1) or not (0). Let the subgraph G⁄ denote the
graph formed by G by removing vertices indexed by a 0
in c. The problem is now to find a binary vector c such that,
operating on G⁄ we:

maximize
XjZj

i¼0

Zdata
i

TðZiÞ
ð1Þ

subject to TðZiÞ –1 ð2Þ
XjXj

i¼0

ci 6 Xmax ð3Þ
Constraint (2) ensures that there is always a path in G⁄

between the source and destination for each flow. This is
because the delay for a non-existent edge will be set to
inf, or equivalently, G⁄ can be made fully connected with
the newly created edges having a very large weight. Con-
straint 3 ensures that the number of waypoints deployed
is less than or equal to the maximum possible. This prob-
lem can be recognized as a binary integer programming
problem and is thus NP-hard. Popular heuristics include
the branch-and-bound algorithm, which is available in
MATLAB as bintprog or various algorithms available in
ILOG/CPLEX. Once the selection vector is available, source
routing can be performed by building the optimal path for
each flow in G⁄ and noting the waypoints used in that flow.

[A polynomial heuristic] can be admitted if Xmax is un-
bounded. The heuristic in Algorithm 2 chooses c such that
the aggregate throughput is maximum. First, all simple
paths between the source and destination for each flow
is computed using a depth first search algorithm (Step 3).
For each path, the throughput is computed by dividing
the time taken for a path (sum of edges) into the maximum
data that can be transferred on that flow, by considering
per-contact data transfer. The path with maximum
throughput is then chosen (Step 4). All vertices in this path
excluding the source and destination are added to a previ-
ously empty set X⁄ (Steps 5, 6). This process is repeated for
each flow. The set X⁄ will then contain the set of vertices
which will maximize the aggregate throughput by maxi-
mizing the throughput for each flow, given that Xmax is
unbounded.

Algorithm 2. Polynomial Placer

1: X⁄ /
2: for each Zi 2 Z do
3: paths depth-first-search in G between Zsrc

i and

Zdst
i

4: path the path in paths with maximum Zdata
i

TðZiÞ
5: Add all vertices in path to X⁄

6: Remove Zsrc
i and Zdst

i from X⁄

7: end for
8: c  0
9: for each xi 2 X do
10: if xi 2 X⁄ then
11: ci 1
12: end if
13: end for
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[Construction of Z] The process of constructing Z
according to the constraints specified above is itself an
optimization problem. To achieve a true globally optimal

solution, every possible Z should be constructed and
applied to the throughput optimization problem above.
A binary integer programming model can do this
exhaustive search much more efficiently. If the time and
resource complexity cannot be afforded, any combination
of Z can be tried till a suitable placement of waypoints is
obtained.

[User input] In order to use DistressNet and use FogNet
service optimization, a GIS map of the affected area is
needed, along with the locations of important points of
interest like the C2 and collapsed rubble. Approximate
paths of the scheduled patrols of each vehicle in the area,
as well as their speed is required. The flows in the network
and their availabilities are required. An availability of 1 for
a BTag data flow is the equivalent of a functional require-
ment like ‘‘Digitized X-Codes are very important and
should be available at all devices in the Fog at all times’’.
Based on this set of information, chosen waypoint loca-
tions will be provided to the responders by the optimiza-
tion program and Class C routers will need to be
deployed at these locations. It is to be noted that the afore-
mentioned Fog service will not cease to function in case
the user input data like the speed of vehicles suddenly
changes. The performance of the Fog will be less than opti-
mal, but since the system cannot control the movement of
vehicles, there is little that can be done.
5.2.1. Sink election for sensors
Typical sources in the data management problem in-

clude BTag Sensors deployed around a building, for exam-
ple. Not all of the senors in this sensor subnetwork may
have access to passing vehicles due to the topology. It is
therefore necessary to choose a sensor from this subnet-
work to act as a sink which can act as a source of data
by offloading aggregated data to vehicles. The most effi-
cient sink can be selected globally by using a virtual ver-
tex technique: in graph G, model a source vertex S as
having access to a set of vehicles which is the union of
the set of vehicles accessible by each sensor in the sub
sensor network. This way, once the optimal paths are se-
lected by searching for G⁄ (and hence the optimal vehicle
for S), simply select a sensor which has access to this par-
ticular vehicle.

[A ‘‘Zero Cost’’ solution] that solves the problem sub-
optimally is necessary since a globally optimal solution
cannot be possible pre-deployment, and also since gather-
ing vehicular incidence data causes delays. The solution is
simple: a sensor which has access to the most number of
unique vehicles is given higher priority during sink elec-
tion. This way, we simply increase the chance of the above
algorithms finding a high throughput G⁄, since the number
of edges in G will be greater. The zero cost refers to the fact
that we make use of RPL’s routing tree structure to perform
sink election and resolve conflicts among candidates. This
ensures that there is no additional messaging overhead
(e.g., for neighbor discovery), while at the same time pro-
viding unicast communication in the subnetwork.
Algorithm 3. Sink Election

1: procedure SINKELEC(For node i)
2: sc(sink) 0
3: if ScoreTimerFired then
4: Calculate sc(mi)
5: if sc(mi) > sc(sink) then
6: Broadcast sc(mi) to DAGRoot
7: end if
8: end if
9: end procedure
10: procedure SINKELECROOT(For the DAGRoot)
11: if ElecTimerFired then
12: sink id(Max(received scores))
13: Broadcast sink to all children
14: end if
15: end procedure

Mathematically, a single ‘‘source’’ in the previous sec-
tion can be modeled as a set M = {m1 . . . mn} of deployed
sensor nodes. We assume that two sources are not con-
nected; otherwise they can be modeled as a single source.
Let batt(mi) be the residual battery charge of node mi,-
beac(mi) the number of beacons received from vehicles
passing by, and uniq(beac(mi)) be the number of unique
vehicles encountered by mi. Now, Let sc(mi) > 0 be a scoring
function that assigns the eligibility score to any node mi

based on the above three parameters. The sink selection
problem can be formulated as the choosing of a particular
mi such that we:

maximize scðmiÞ ^ uniqðbeacðmiÞÞ ð4Þ

subject to beacðmiÞ > 0 ð5Þ
battðmiÞ > 0 ð6Þ
Algorithm 3 shows the distributed sink election using
RPL’s tree structure. The scoring function sc used was
sc(mi) = 3 � uniq(beac(mi)) + 2 � beac(mi) + batt(mi). This
simple, computationally inexpensive function gives more
weight to the number of unique vehicles seen by the node,
while at the same time preferring nodes which frequently
see vehicles. Nodes, after computing their score regularly
(Step 4) and comparing it with the current sink’s score
(Step 5), send the score to the root of the DAG structure
built by RPL. Because frequent sink changes are considered
resource intensive, the root conducts election only at spec-
ified intervals. During this election process, potential can-
didates are compared and the node with the highest
score is chosen (Step 12). In case of a tie, the node with
the lowest id is chosen. The identity of the new sink is then
broadcast to each child node, till the leaf nodes are notified
as well (Step 13).
6. Evaluation

DistressNet is a complex wireless, sensor, adhoc and de-
lay tolerant network system. In this section we present the
performance evaluation of the individual components of



Fig. 11. Schematic showing the layout of Disaster City.

Fig. 12. Map of DistressNet deployment at Disaster City during Summer
2012.

H. Chenji et al. / Ad Hoc Networks 11 (2013) 2440–2460 2453
the system, as well as the entire system. The accuracy of
the Vibration Sensing app has been evaluated in Disaster
City (Fig. 11), which is a comprehensive 52-acre training
facility for emergency responders with extremely realistic
wrecks, including several rubble piles of wood and
concrete.

First, we describe how DistressNet can be deployed in
Disaster City, following a hypothetical disaster. The
deployment effort needed from first responders, as well
as the data needed from the deployment area is discussed.
Next, the software stack used in the DistressNet device
classes of A, B and C is presented. Finally, we progressively
evaluate the system and the service internals by first find-
ing the optimal payload size for 802.11 and 802.15.4 trans-
fers for a given speed. Then, after verifying the correctness
of the Sink Election algorithm using EPIC motes, we per-
form a simple experiment (Expt 1) which does not attempt
to optimize the DTC. A simulation helps us choose the best
routing protocol for this experiment. In a second deploy-
ment (Expt 2) we then show the improvement in aggregate
goodput even in the presence of DTN security overhead, by
the use of optimal payload size, source routing and optimal
Data Waypoint placement. These experiments involved
three vehicles and various data sources, and was con-
ducted on our campus. The accuracy of the vibration sens-
ing app w.r.t classifying the source of noise is shown. We
finally share the lessons we learned during designing,
building and evaluating DistressNet.
6.1. Deployment scenario

DistressNet was deployed in Disaster City during Sum-
mer 2012 as part of an exercise involving first responders.
The objective of this deployment was to test the practical-
ity of deploying DistressNet during a disaster, and not to
test the performance of DistressNet over many days. At
10 A.M. on May 17, the Incident Commander convened a
meeting at the Command Post (EOC in Fig. 12). Participants
consisted of various groups specializing in technology such
as UAVs, ground robots, marine robots and delay tolerant
networking. The situation summary was as follows:

A major train derailment involving an estimated 12 cars
of a freight train has occurred in the SE sector of Disas-
ter City, TX. The derailment is adjacent to a producing
oil well, underground oil distribution line, above and
below ground power lines, commercial and private res-
idences. Unknown at this time: damage to utilities and
infrastructure but power is out in the area. Unknown if
any car (s) are leaking but residents in the area report
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Fig. 13. Per-contact performance for WiFi: the DTC without security (a) and with security (b); the number of bundles transferred without security (c) and
with security (d).
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burning eyes and difficulty breathing per EMS/Fire dis-
patch. Unknown casualties. Engineer stated that train
had radiological cargo; however the manifest has not
yet been obtained. A full RECON by HAZMAT and aerial
surveillance must be conducted in order to establish
appropriate DECON. Winds are out of the north west.
Initial HOT Zone has been established, see map. Any
RECON by personnel shall be coordinated with HAZ-
MAT. Responder medical and Command post located
next to EOTC.

The area of the disaster was 0.081 square miles. No hu-
man movement was allowed in the HOT zone due to dan-
ger of contamination. Any robot entering the HOT or
WARM zones had to be decontaminated at DECON before
being handled by a human. The objective of our team
was to provide networking in the area, so that data from
the DECON area (DECON in Fig. 12) could reach the com-
mand post. The only travel route to the DECON area was
through a dirt road (TRAVEL ROUTE in Fig. 12). Addition-
ally, data from the marine robots (location ‘‘3’’ in Fig. 12)
also needed a path to make it to the Command Post. Loca-
tion 2 had a collapsed strip mall that the US&R team would
have investigated. After a group huddle, we decided to de-
ploy four routers in the area (locations 1, 2, 3, 4 in Fig. 12).
Location 1 was a Data Waypoint, location 2 was a Sensor
Proxy due to the presence of BTag Sensors nearby, and
location 3 was a Data Waypoint. A Base Station (4) was
placed at the EOC. The entire deployment effort took about
two hours including travel time. Deploying a node was
easy, since they were all mounted on tripods and were bat-
tery powered. BTag sensors were attached to the strip mall
rubble using duct tape and were programmed using Smart-
phones/BTag app carried by our team. Additionally, a few
pictures were sent using smartphones/file sharing app
from the node at location 1 to the Base Station 4 at the
EOC. FogNet service optimization using source routing
was not performed due to the limited time available and
the small size of the deployment area. Epidemic routing
was used to route packets. The entire experiment, includ-
ing setup and debugging took about six hours (excluding
a lunch break).
6.2. WiFi contact benchmark

As mentioned before, DTC between a vehicle and a sta-
tionary node over DTN depends on many factors, two of
them being the speed of the vehicle and the payload size.
Other factors that can be considered include TCP over
UDP, IPv6 over IPv4, the transmit power of the nodes and
the distance of the vehicle from the stationary node. For
reasons of simplicity and limited resources, only the speed
and payload size were considered.
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Data was gathered over multiple days involving around
50 man-hours. A node mounted on a tripod was placed at
approximately the same location, within human error, on
each day. A vehicle then drove by at three different speeds
of 15, 20 and 30 mph. For each speed, several bundle sizes
of 20 KB-800 KB were tested, with TCP over IPv4 over
802.11 IBSS mode on 5 GHz. For each combination of speed
and bundle size, three runs were performed and averaged
to iron out any random errors. The entire experiment
was repeated for the case when DTN layer security is en-
abled. The results can be seen in Fig. 13.

[Effect of vehicle speed] The DTC for Wifi contacts is
shown in Fig. 13(a,b). We observe that as speed increases,
the DTC decreases, for both secure and insecure transfers.
This is to be expected since increased mobility results in
lesser contact time and also degradation of link quality.
Considering a base speed of 15 mph, an increase of 1.3�/
2� to 20/30 mph should intuitively result in a throughput
decrease of 0.75�/0.5� respectively. Without security and
when averaged over all bundle sizes, these ratios were in
practice found to be 0.86� (+14.67%) and 0.63� (+26%).
With security enabled, they were 0.72� (�4%) and 0.42�
(�16%) – this is expected since security incurs overhead.
The number of bundles transferred can be seen in
Fig. 13(c,d). The ratios for insecure transfer were 0.91�/
0.63�, whereas for secure transfers, it was 0.81�/0.49�.
We conclude that the number of transferred bundles de-
creases sub-linearly with increase in speed.

[Effect of payload size] The payload size affects the
number of unique bundles created in each node’s queue.
A large number of bundles stored on a router demands
more resources for local processing. As a result, DTC is
low at small bundle sizes. We also observe a flattening of
the goodput curve at larger payload sizes (Fig. 13(a,b)),
above around 200 KB. This implies that bundles with at
least 200 KB are optimal for transferring between routers.
Concretely, with a baseline of 20 KB, the expected ratios
for 80, 200, 500, 800 are 4�/10�/25�/40�. Without secu-
rity, these ratios when averaged over all speeds are: 1.77�/
2.49�/2.63�/2.68�. With secure transfers, we achieve
2.15�/3�/2.25�/2.73�. These results lead us to believe,
based on empirical data, that the DTC increases with the
square of the expected ratio up to a ‘‘critical’’ bundle size,
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Fig. 14. Zigbee contact performance – (a) data transfe
after which it remains constant. A similar effect holds true
for the number of bundles transferred – the number stays
almost constant once a threshold bundle size is reached.

6.3. 802.15.4 Contact benchmark

The effect of payload size and mobility on the DTC two
nodes over 802.15.4 can be seen in Fig. 14. A stationary
node was placed 5 feet above the ground, while a mobile
node was placed in the passenger seat of a vehicle. The
vehicle made multiple, regular runs at speeds of 15, 20
and 30 mph, transferring at each run multiple packets.
These packets had a payload size between 10 and 90B.
The software used was IPv6/UDP using Blip2 on TinyOS.
The maximum MTU for 6lowpan/IPv6 is 100B – however,
fragmentation was found to be unstable and hence unus-
able. Therefore, we limited our payload size to roughly
100B in our experiments. Each transferred packet used
application layer acknowledgments. Each data point repre-
sents two separate runs using identical parameters.

[The effect of vehicle speed] upon DTC can be seen in
Fig. 14(a). As expected, DTC decreases with increasing
speed. DTC shows degradation consistent with speed: the
ratios for 20/30 mph considering 15 mph as the baseline
are 0.76�/0.55�, which are +1.3%/+10%. Packet losses
(Fig. 14(b)) are independent of speed: the respective ratios
are 0.99� and 1.01� when averaged across all payload
sizes. We conclude that speed has a marked, linear effect
on DTC, but packet loss percentages are independent of
speed and constant.

[The effect of payload size] upon DTC is surprising: gi-
ven the same contact time/speed, it increases with increas-
ing payload size. This means that there is a constant
overhead involved in the processing, sending and ACKing
of packets – increasing the payload size does little to affect
this overhead, but results in a large DTC. Given a baseline
of 10B, the ratios for 30/50/70/90B (3�/5�/7�/9�) are
2.74�, 4.97�, 6.33�, 10.22�. The respective change
against their expected ratios (assuming a linear relation-
ship) are �8.65%, �0.61%, �9.51%, 13.54%. Thus, choosing
the biggest possible payload size results in maximal DTC
(within the limits of fragmentation). For packet loss (%),
the ratios were 1.2�/1.15�/1.45�/0.9� – showing that
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empirically, the largest payload size will suffer relatively
fewer losses.

6.4. Sink election

The results of running a sink election algorithm using
RPL/Blip2/TinyOS on EPIC motes is shown in Fig. 15. Four
BTag Sensors were deployed outdoors, while a fifth node
in a vehicle acted as a beacon with an interval of 2 s. The
battery voltage was read every 2 s, the election was con-
ducted every 10 s, and data was generated every 60 s. Be-
cause the experiment was conducted outdoors, we had to
set the transmission power to �15 dBm (9.9 mA draw) to
simulate a multi hop network. The vehicle drove in loops
at around 10 mph first around nodes 1 and 2, then around
nodes 3 and 4 starting at iteration 10. We see that the node
with the highest score elected as the sink (Node 1 first, and
then Node 4) – this verifies the correct execution of our
algorithm. Interestingly, Node 3 was able to receive a few
stray beacons due to radio irregularities. However, this
did not disturb the election or cause a switch in the elected
sink in the long run (up to iteration 45).

6.5. Networking

The DTN simulator chosen for the task of choosing a
routing protocol was the Opportunistic Network Environ-
ment simulator (TheONE). The paths of vehicles were dig-
itized using the Google Earth GIS software. The entire setup
in simulation consists of 26 nodes – 5 data sources each at
Sources 1 and 2, three routes with 5 vehicles on each route
and a C2 node. The vehicles move at a speed uniformly
chosen between U(19, 21) mph by default. The transmis-
sion range is 13 m, in order to allow for a multi hop net-
work. Each data source sends a packet of size U(95, 105)
KB every U(20, 30) seconds to the C2. The total simulation
time for each scenario is 1 h unless specified otherwise.

The combined performance of four DTN routing proto-
cols can be seen in Fig. 16. Epidemic routing aims to deliver
messages by delivering a copy of the data to every neigh-
bor that it encounters. It has one of the highest delivery
rates and the lowest latency. A caveat is the overhead
which is the number of extra messages created while rout-
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ing per delivered packet, and the average hop count. In
PRoPHET routing, each node maintains the probability of
each of its neighbors being able to deliver a packet to a gi-
ven destination. The delivery rate is same as that of Epi-
demic, but the latency is 26 s higher. SNW refers to the
Spray and Wait protocol which aims to bound the number
of copies of a packet in the network by a given parameter.
For 2 values of 10 and 6, the SNW protocol has a very low
overhead and hop count, but has a low delivery rate and
high latency. We chose to use Epidemic routing for its high
delivery rate and low latency.

6.6. Goodput and waypoint placement

[Setup] In order to evaluate the waypoint placement
algorithm, we designed a deployment (Fig. 17) involving
three cars and three flows with three data producing/con-
suming nodes. Flow1 in the following text refers to data
sent from Source1 to the Base, Flow2 is from Source2 to
Fig. 17. Map of Deployment: S1, S2 are sources, V1, V2, V3 are vehicles,
WP1, WP2 are Data Waypoints, X are locations.
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the Base, and Flow3 is from Source1 to Source2. Flows1
and 2 were firm flows, whereas Flow3 was a potential flow
from S2 to the Fog with a 33% availability. For the sake of
flow diversity, Flow3 was made firm by choosing S2 as a
destination. Two possible waypoint locations were WP1
and WP2. There are four configurations possible with two
locations: none (config0), both (config3), WP1 only (con-
fig1) and WP2 only (config2). The goodput for each flow
was experimentally measured for all possible waypoint
configurations.

[Expt. 1: Epidemic routing/no DTC optimization] For
this experiment all nodes performed epidemic routing. Re-
sults for the goodput and delay are presented in
Fig. 18(a,b). Payload size was chosen to be 100 KB, each
flow generated data at every 20 s, vehicles moved at
around 20 mph. It has to be noted that the sources them-
selves act as data waypoints due to the nature of Epidemic
routing – hence, the goodput improvement between the
configurations is not that high as compared to the follow-
ing experiment. Config3 proved to be optimal by providing
the highest aggregate goodput across all the flows. If we
consider only Flows1 and 2, since Flow3 does not need
any additional waypoints (since the same vehicle passes
through Sources1 and 2), configs1 and 3 are almost equal.

[Expt. 2: Source routing/with DTC optimization] For
this experiment, values from the WiFi and 802.15.4 contact
experiments were used to determine the payload sizes of
flows. In addition to source routing replacing Epidemic
routing of the previous experiment, security at the DTN
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Fig. 18. Expt. 1: DWP performance in terms of (a) latency and (b) goodput
layer was enabled. Flow2 was converted to a 802.15.4 flow
with the vehicle picking up data from Source2 using
802.15.4 instead of Wifi. Flow1 was still Wifi based – this
meant all deliveries to Source2 were made over Wifi. The
payload sizes for Wifi and 802.15.4 were chosen to be
300 KB and 90B respectively. However, once a vehicle
picked up 90B packets, they were marshaled into 300 KB
DTN bundles. Data was generated every 30 s.

As a result we see a marked increase in the aggregate
goodput as compared to the previous experiment. Because
of source routing, unnecessary copies of bundles were not
created, leading to efficient and non-redundant per-con-
tact data transfer. However, the maximum delay in config0
is high because there is no data replication (and only
opportunistic contact between vehicles), but when way-
points are present, the delay is comparable in spite of the
increased payload size and overhead due to security. We
conclude that using source routing and choosing the pay-
load size optimally results in a 2� increase in goodput.

6.7. Apps: Vibration monitoring

We evaluated our building sensing network in Disaster
City on three different rubble piles: one consisting of woo-
den rubble (Fig. 19(a)), one of concrete, and another with a
combination of concrete and mud. In the latter one, the soft
mud dampens the vibrations caused inside the pile and
hence makes detection with a seismic sensor difficult.
Samples for different types of events were gathered at each
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of these piles: a stone drop, a footstep and a hammer
strike. Half of the samples were used to train the KNN clas-
sifier, and the other half to evaluate performance. All sam-
ples were taken at slightly different strike intensities and
distances from the sensor.

Results are shown in Fig. 19(b). ‘‘wood1’’ represents
samples taken at the wooden pile with the default sensitiv-
ity threshold of 25 and ‘‘wood2’’, at a threshold of 50. A
higher threshold implies lower sensitivity. This higher
threshold was not possible on the two other piles since
the sensor could not register soft knocks and events. We
conclude that a k = 3 provides for optimal performance
from the KNN classifier with an average detection of accu-
racy of 73.33% independent of type of rubble, strike inten-
sity and the distance from the seismic sensor.

6.8. Apps: Separation detection

The effect of separation upon the state of a team mem-
ber is shown in Fig. 20. An experiment was conducted in-
side an urban building where iPod touches running the
separation detection app were given to each member.
‘‘One’’ is the team leader and hence injects a constant state
into the network. Initially, all the team members were
present in a single room until time 30. Then, One and
Two separated from Three by going into another room.
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Fig. 20. Graph of state versus time for a team of three responders.
As a result, the state of Three drops to zero since it is no
longer connected to One, and the states of Two as well as
One increase and converge (time 40 � 60).

Then, One and Two move around in the large room with
lot of metallic wall sized objects, causing disconnection.
This disconnection is temporary and does not signal a sep-
aration. Later, Two returns to the same room as Three at
time 95. As a result, the state of Three increases for time
100 � 110 due to the residual state brought by Two, but
both of them quickly decrease to zero at 110 since they
are no longer connected to One. Finally, One reunites with
Two and Three at 140 causing all of their states to
converge once again to their initial values. The average
detection delay, looking at each of the three separation
events and the corresponding state at that time, is
ð45�30Þþð98�95Þþð143�140Þ

3 ¼ 7 s. The detection delay for separa-
tion as opposed to rejoining is a little longer because of
the guard interval before a node declares a neighbor as
disconnected.

6.9. Lessons learned

In this section, we share some of the valuable lessons
we learned during our experience of designing, building
and testing DistressNet over a year and about 1500 man-
hours of outdoor deployments.

Power savings: In order to truly extend the lifetime of
the system, duty cycling the 802.11 radios which draw
around 200 mA when active is necessary. Because the
majority of the devices in DistressNet operate in the IBSS
mode, power saving mode (PSM) support for IBSS mode
in the hardware is essential. However, implementing this
functionality in the linux ath9k drivers was too time con-
suming. Hence, we could only enable PSM functionality
for class B STAs while the 2.4 GHz interface of class C de-
vices operated in AP mode. Experimental verification was
performed using MiniPCI extenders which allowed us to
isolate and measure the current drawn by a MiniPCI card,
used in the RB433UAH as well as older laptops.

Linksys WRT54GL routers meant for home-office use
exhibit duty cycling when turned on and off using the
iwconfig tool, when flashed with OpenWRT. This reduces
the current drawn by 70 mA, while not allowing the estab-
lished IP layer connections to time out. While this behavior
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does save some power, this is not a clean solution which is
exhibited by all devices. An implementation in the kernel
provides much better results and was pursued by us in fa-
vor of this approach.

Multiple hardware generations: Initial versions of Dis-
tressNet attempted to use Linksys WRT54GL as well as
Netgear WNDR3700 routers. ‘‘Hardened’’ routerboards
such as the Mikrotik RB433UAH were eventually chosen
due to the robustness as well as the customizability. Due
to the increased disk space available from 8 MB to
512 MB in RB433UAH, we were able to include the libraries
needed for DTN security, without compromising or trying
to optimize the size of other libraries. This approach
while slightly more expensive allowed for much more
luxurious debugging and re-use of popular libraries like
Boost for C++. The USB interfaces as well as dual radios
on the WNDR3700/RB433UAH provided additional func-
tionality while at the same time saving the unreliability
that comes from runing multiple daemons on the same
radio interface.

7. Conclusions

We have presented DistressNet, a system that addresses
the needs of Urban Search and Rescue workers during the
aftermath of a natural disaster. An app oriented design
integrates inexpensive and heterogeneous battery-pow-
ered COTS devices like smartphones and low power sen-
sors into an easily deployable architecture. External cloud
services such as Amazon S3 and Twitter are made available
to first responders over a delay tolerant network, through
the FogNet subsystem. Situational awareness is improved
by increasing the aggregate throughput of DistressNet, by
optimally by placing additional hardware at certain loca-
tions in the area of deployment. The vibration sensing
app can distinguish victims trapped under a rubble pile
from environmental noise with 73.3% accuracy.

DistressNet is an academic effort and has been evalu-
ated in realistic settings wherever possible. Evaluation of
the system as a whole, by scaling DistressNet to tens of
nodes and hundreds of flows over multiple days is time
and resource consuming – therefore, we have only per-
formed piecewise evaluation. The waypoint placement
algorithm assumes that mobility in the area is a subset of
the PDM model, and will possibly benefit from a more
comprehensive model.

Our agenda for ongoing and future work on DistressNet
include thorough evaluation over multiple days. Extensi-
bility of the DistressNet architecture allows for exciting
applications such as victim triangulation under rubble
using seismic sensors to be easily integrated. System-wide
energy efficiency has not been sufficiently addressed, and
is ongoing work – as is the problem of optimizing metrics
other than the throughput, like mean delay or packet deliv-
ery rate.
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